国产丰满人妻被夫上司侵犯,中文字幕日韩精品人妻,最新中文字幕在线一区二区,欧美不卡的一区二区三区,日本邻居少妇人妻p,天天扎天天透天天干,日韩最新免费中文字幕在线观看,日韩精品美女一区二区三区,蜜臀国产一区二区三区在线

歡迎來到吉林省華博科技工業有限公司網站!
咨詢熱線

13009129951

當前位置:首頁  >  技術文章  >  電壓擊穿試驗儀美標標準ASTM D149

電壓擊穿試驗儀美標標準ASTM D149

更新時間:2009-03-19  |  點擊率:8853

Designation: D 149 – 97a (Reapproved 2004)
Standard Test Method for
Dielectric Breakdown Voltage and Dielectric Strength of
Solid Electrical Insulating Materials at Commercial Power
1
Frequencies
This standard is issued under the fixed designation D 149; the number immediay following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
1. Scope over). With the addition of instructions modifying Section 12,
this test method may be used for proof testing.
1.1 This test method covers procedures for the determina-
1.8 ThistestmethodissimilartoIECPublication243-1.All
tion of dielectric strength of solid insulating materials at
2,3 procedures in this method are included in IEC 243-1. Differ-
commercial power frequencies, under specified conditions.
ences between this methodand IEC 243-1 are largely editorial.
1.2 Unless otherwise specified, the tests shall be made at 60
1.9 This standard does not purport to address all of the
Hz. However, this test method may be used at any frequency
safety concerns, if any, associated with its use. It is the
from 25 to 800 Hz. At frequencies above 800 Hz, dielectric
responsibility of the user of this standard to establish appro-
heating may be a problem.
priate safety and health practices and determine the applica-
1.3 This test method is intended to be used in conjunction
bility of regulatory limitations prior to use. Specific hazard
with anyASTM standard or other document that refers to this
statements are given in Section 7. Also see 6.4.1.
test method. References to this document should specify the
particular options to be used (see 5.5).
2. Referenced Documents
1.4 It may be used at various temperatures, and in any
4
2.1 ASTM Standards:
suitable gaseous or liquid surrounding medium.
D 374 Test Methods for Thickness of Solid Electrical Insu-
1.5 This test method is not intended for measuring the
lation
dielectric strength of materials that are fluid under the condi-
D 618 Practice for Conditioning Plastics for Testing
tions of test.
D 877 Test Method for Dielectric Breakdown Voltage of
1.6 This test method is not intended for use in determining
Insulating Liquids Using Disk Electrodes
intrinsic dielectric strength, direct-voltage dielectric strength,
D 1711 Terminology Relating to Electrical Insulation
or thermal failure under electrical stress (see Test Method
D 2413 Practice for Preparation of Insulating Paper and
D3151).
Board Impregnated with a Liquid Dielectric
1.7 This test method is most commonly used to determine
D 3151 Test Method forThermal Failure of Solid Electrical
thedielectricbreakdownvoltagethroughthethicknessofatest
Insulating Materials Under Electric Stress
specimen (puncture). It may also be used to determine dielec-
D 3487 Specification for Mineral Insulating Oil Used in
tric breakdown voltage along the interface between a solid
Electrical Apparatus
specimen and a gaseous or liquid surrounding medium (flash-
D 5423 Specification for Forced-Convection Laboratory
Ovens for Electrical Insulation
1
This test method is under the jurisdiction of ASTM Committee D09 on 2.2 IEC Standard:
Electrical and Electronic Insulating Materials and is the direct responsibility of
Pub. 243-1 Methods of Test for Electrical Strength of Solid
Subcommittee D09.12 on Electrical Tests. 5
Insulating Materials—Part 1: Tests at Power Frequencies
Current edition approved March 1, 2004. Published March 2004. Originally
approved in 1922. Last previous edition approved in 1997 as D 149–97a.
2
Bartnikas, R., Chapter 3, “High Voltage Measurements,” Electrical Properties
4
of Solid Insulating Materials, Measurement Techniques, Vol. IIB, Engineering For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Dielectrics, R. Bartnikas, Editor, ASTM STP 926, ASTM, Philadelphia, 1987. contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
3
Nelson, J. K., Chapter 5, “Dielectric Breakdown of Solids,” Electrical Standards volume information, refer to the standard’s Document Summary page on
Properties of Solid Insulating Materials: Molecular Structure and Electrical the ASTM website.
5
Behavior, Vol. IIA, Engineering Dielectrics, R. Bartnikas and R. M. Eichorn, Available from the International Electrotechnical Commission, Geneva, Swit-
Editors, ASTM STP 783, ASTM, Philadelphia, 1983. zerland.
Copyright (C) ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

D 149 – 97a (2004)
2.3 ANSI Standard: environmentalsituations.Thistestmethodisusefulforprocess
C68.1 Techniques for Dielectric Tests, IEEE Standard No. control, acceptance or research testing.
6
4 5.3 Resultsobtainedbythistestmethodcanseldombeused
directly to determine the dielectric behavior of a material in an
3. Terminology actual application. In most cases it is necessary that these
results be evaluated by comparison with results obtained from
3.1 Definitions:
other functional tests or from tests on other materials, or both,
3.1.1 dielectric breakdown voltage (electric breakdown
in order to estimate their significance for a particular material.
voltage), n—the potential difference at which dielectric failure
5.4 Three methods for voltage application are specified in
occurs under prescribed conditions in an electrical insulating
Section 12: Method A, Short-Time Test; Method B, Step-by-
material located between two electrodes. (See also Appendix
StepTest; and Method C, Slow Rate-of-RiseTest. MethodAis
X1.)
the most commonly-used test for quality-control tests. How-
3.1.1.1 Discussion—The term dielectric breakdown voltage
ever, the longer-time tests, Methods B and C, which usually
is sometimes shortened to “breakdown voltage.”
will give lower test results, may give more meaningful results
3.1.2 dielectric failure (under test), n—an event that is
whendifferentmaterialsarebeingcomparedwitheachother.If
evidencedbyanincreaseinconductanceinthedielectricunder
a test set with motor-driven voltage control is available, the
test limiting the electric field that can be sustained.
slow rate-of-rise test is simpler and preferable to the step-by-
3.1.3 dielectric strength, n—the voltage gradient at which
step test. The results obtained from Methods B and C are
dielectric failure of the insulating material occurs under spe-
comparable to each other.
cific conditions of test.
5.5 Documents specifying the use of this test method shall
3.1.4 electric strength, n—see dielectric strength.
also specify:
3.1.4.1 Discussion—Internationally, “electric strength” is
5.5.1 Method of voltage application,
used almost universally.
5.5.2 Voltage rate-of-rise, if slow rate-of-rise method is
3.1.5 flashover, n—a disruptive electrical discharge at the
specified,
surface of electrical insulation or in the surrounding medium,
5.5.3 Specimen selection, preparation, and conditioning,
which may or may not cause permanent damage to the
5.5.4 Surrounding medium and temperature during test,
insulation.
5.5.5 Electrodes,
3.1.6 For definitions of other terms relating to solid insulat-
5.5.6 Wherever possible, the failure criterion of the current-
ing materials, refer to Terminology D 1711.
sensing element, and
4. Summary of Test Method 5.5.7 Any desired deviations from the recommended proce-
dures as given.
4.1 Alternating voltage at a commercial power frequency
5.6 If any of the requirements listed in 5.5 are missing from
(60 Hz, unless otherwise specified) is applied to a test
the specifying document, then the recommendations for the
specimen. The voltage is increased from zero or from a level
several variables shall be followed.
well below the breakdown voltage, in one of three prescribed
5.7 Unless the items listed in 5.5 are specified, tests made
methods of voltage application, until dielectric failure of the
with such inadequate reference to this test method are not in
test specimen occurs.
conformancewiththistestmethod.Iftheitemslistedin5.re
4.2 Mostcommonly,thetestvoltageisappliedusingsimple
not closely controlled during the test, the precisions stated in
test electrodes on opposite faces of specimens. The specimens
15.2 and 15.3 may not be realized.
may be molded or cast, or cut from flat sheet or plate. Other
5.8 Variations in the failure criteria (current setting and
electrode and specimen configurations may be used to accom-
response time) of the current sensing element significantly
modate the geometry of the sample material, or to simulate a
affect the test results.
specific application for which the material is being evaluated.
5.9 Appendix X1. contains a more complete discussion of
the significance of dielectric strength tests.
5. Significance and Use
5.1 The dielectric strength of an electrical insulating mate- 6. Apparatus
rial is a property of interest for any application where an
6.1 Voltage Source—Obtain the test voltage from a step-up
electrical field will be present. In many cases the dielectric
transformer supplied from a variable sinusoidal low-voltage
strength of a material will be the determining factor in the
source. The transformer, its voltage source, and the associated
design of the apparatus in which it is to be used.
controls shall have the following capabilities:
5.2 Tests made as specified herein may be used to provide
6.1.1 The ratio of crest to root-mean-square (rms) test
part of the information needed for determining suitability of a
voltage shall be equal to =2 6 5% (1.34 to 1.48), with the
materialforagivenapplication;andalso,fordetectingchanges
test specimen in the circuit, at all voltages greater than 50 % of
or deviations from normal characteristics resulting from pro-
the breakdown voltage.
cessing variables, aging conditions, or other manufacturing or
6.1.2 The capacity of the source shall be sufficient to
maintainthetestvoltageuntildielectricbreakdownoccurs.For
most materials, using electrodes similar to those shown in
6 Table 1, an output current capacity of 40 mA is usually
Available fromAmerican National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036. satisfactory. For more complex electrode structures, or for

D 149 – 97a (2004)
A
TABLE 1 Typical Electrodes for Dielectric Strength Testing of Various Types of Insulating Materials
Electrode
B,C
Description of Electrodes Insulating Materials
Type
1 Opposing cylinders 51 mm (2 in.) in diameter, 25 mm (1 in.) thick with flat sheets of paper, films, fabrics, rubber, molded plastics, laminates,
edges rounded to 6.4 mm (0.25 in.) radius boards, glass, mica, and ceramic
2 Opposing cylinders 25 mm (1 in.) in diameter, 25 mm (1 in.) thick with same as for Type 1, particularly for glass, mica, plastic, and ceramic
edges rounded to 3.2 mm (0.125 in.) radius
3 Opposing cylindrical rods 6.4 mm (0.25 in.) in diameter with edges same as for Type 1, particularly for varnish, plastic, and other thin film and
D
rounded to 0.8 mm (0.0313 in.) radius tapes: where small specimens necessitate the use of smaller electrodes,
or where testing of a small area is desired
4 Flat plates 6.4 mm (0.25 in.) wide and 108 mm (4.25 in.) long with edges same as for Type 1, particularly for rubber tapes and other narrow widths
square and ends rounded to 3.2 mm (0.125 in.) radius of thin materials
E
5 Hemispherical electrodes 12.7 mm (0.5 in.) in diameter filling and treating compounds, gels and semisolid compounds and greases,
embedding, potting, and encapsulating materials
6 Opposing cylinders; the lower one 75 mm (3 in.) in diameter, 15 mm same as for Types 1 and 2
(0.60 in.) thick; the upper one 25 mm (1 in.) in diameter, 25 mm
F
thick; with edges of both rounded to 3 mm (0.12 in.) radius
G
7 Opposing circular flat plates, 150 mm diameter , 10 mm thick with flat sheet, plate, or board materials, for tests with the voltage gradient
H
edges rounded to 3 to 5 mm radius parallel to the surface
A
TheseelectrodesarethosemostcommonlyspecifiedorreferencedinASTMstandards.WiththeexceptionofType5electrodes,noattempthasbeenmadetosuggest
electrode systems for other than flat surface material. Other electrodes may be used as specified in ASTM standards or as agreed upon between seller and purchaser
where none of these electrodes in the table is suitable for proper evaluation of the material being tested.
B
Electrodes are normally made from either brass or stainless steel. Reference should be made to the standard governing the material to be tested to determine which,
if either, material is preferable.
C
The electrodes surfaces should be polished and free from irregularities resulting from previous testing.
D
Refer to the appropriate standard for the load force applied by the upper electrode assembly. Unless otherwise specified the upper electrodes shall be 50 6 2g.
E
Refer to the appropriate standard for the proper gap settings.
F
The Type 6 electrodes are those given in IEC Publication 243-1 for testing of flat sheet materials. They are less critical as to concentricity of the electrodes than are
the Types 1 and 2 electrodes.
G
Other diameters may be used, provided that all parts of the test specimen are at least 15 mm inside the edges of the electrodes.
H G
The Type 7 electrodes, as described in the table and in Note , are those given in IEC Publication 243-1 for making tests parallel to the surface.
testing high-loss materials, higher current capacity may be one current setting. The electrode area may have a significant
needed.Thepowerratingformosttestswillvaryfrom0.5kVA effect upon what the current setting should be.
for testing low-capacitance specimens at voltages up to 10 kV, 6.1.7 The specimen current-sensing element may be in the
to 5 kVA for voltages up to 100 kV. primary of the step-up transformer. Calibrate the current-
6.1.3 The controls on the variable low-voltage source shall sensing dial in terms of specimen current.
be capable of varying the supply voltage and the resultant test 6.1.8 Exercise care in setting the response of the current
voltage smoothly, uniformly, and without overshoots or tran- control. If the control is set too high, the circuit will not
sients, in accordance with 12.2. Do not allow the peak voltage respondwhenbreakdownoccurs;ifsettoolow,itmayrespond
to exceed 1.48 times the indicated rms test voltage under any to leakage currents, capacitive currents, or partial discharge
circumstance. Motor-driven controls are preferable for making (corona)currentsor,whenthesensingelementislocatedinthe
short-time (see 12.2.1) or slow-rate-of-rise (see 12.2.3) tests. primary, to the step-up transformer magnetizing current.
6.1.4 Equip the voltage source with a circuit-breaking 6.2 Voltage Measurement—A voltmeter must be provided
device that will operate within three cycles. The device shall for measuring the rms test voltage. A peak-reading voltmeter
disconnect the voltage-source equipment from the power may be used, in which case divide the reading by =2toget
service and protect it from overload as a result of specimen rms values. The overall error of the voltage-measuring circuit
breakdown causing an overload of the testing apparatus. If shall not exceed 5 % of the measured value. In addition, the
prolonged current follows breakdown it will result in unnec- response time of the voltmeter shall be such that its time lag
essary burning of the test specimens, pitting of the electrodes, will not be greater than 1% of full scale at any rate-of-rise
and contamination of any liquid surrounding medium. used.
6.1.5 The circuit-breaking device should have an adjustable 6.2.1 Measure the voltage using a voltmeter or potential
current-sensing element in the step-up transformer secondary, transformer connected to the specimen electrodes, or to a
to allow for adjustment consistent with the specimen charac- separate voltmeter winding, on the test transformer, that is
teristics and arranged to sense specimen current. Set the unaffected by the step-up transformer loading.
sensing element to respond to a current that is indicative of 6.2.2 It is desirable for the reading of the maximum applied
specimen breakdown as defined in 12.3. test voltage to be retained on the voltmeter after breakdown so
6.1.6 The current setting can have a significant effect on the that the breakdown voltage can be accuray read and re-
test results. Make the setting high enough that transients, such corded.
as partial discharges, will not trip the breaker but not so high 6.3 Electrodes—For a given specimen configuration, the
thatexcessiveburningofthespecimen,withresultanectrode dielectric breakdown voltage may vary considerably, depend-
damage, will occur on breakdown. The optimum current inguponthegeometryandplacementofthetesectrodes.For
setting is not the same for all specimens and depending upon this reason it is important that the electrodes to be used be
the intended use of the material and the purpose of the test, it described when specifying this test method, and that they be
may be desirable to make tests on a given sample at more than described in the report.

D 149 – 97a (2004)
6.3.1 One of the electrodes listed in Table 1 should be the test values. Testing in air may require excessively large
specified by the document referring to this test method. If no specimens or cause heavy surface discharges and burning
electrodes have been specified, select an applicable one from before breakdown. Some electrode systems for testing in air
Table 1, or use other electrodes mutually acceptable to the make use of pressure gaskets around the electrodes to prevent
parties concerned when the standard electrodes cannot be used flashover. The material of the gaskets or seals around the
due to the nature or configuration of the material being tested. electrodes may influence the breakdown values.
See references in Appendix X2 for examples of some special 6.4.1 When tests are made in insulating oil, an oil bath of
electrodes.Inanyeventtheelectrodesmustbedescribedinthe adequate size shall be provided. (Caution—The use of glass
report. containers is not recommended for tests at voltages above
6.3.2 The electrodes of Types 1 through 4 and Type 6 of about10kV,becausetheenergyreleasedatbreakdownmaybe
Table 1 should be in contact with the test specimen over the sufficient to shatter the container. Metal baths must be
entire flat area of the electrodes. grounded.)
6.3.3 The specimens tested using Type 7 electrodes should It is recommended that mineral oil meeting the requirements
be of such size that all portions of the specimen will be within of Specification D 3487, Type I or II, be used. It should have a
andnolessthan15mmfromtheedgesoftheelectrodesduring dielectric breakdown voltage as determined by Test Method
test. In most cases, tests usingType 7 electrodes are made with D 877 of at least 26 kV. Other dielectric fluids may be used as
the plane of the electrode surfaces in a vertical position. Tests surrounding mediums if specified. These include, but are not
made with horizontal electrodes should not be directly com- limited to, silicone fluids and other liquids intended for use in
pared with tests made with vertical electrodes, particularly transformers, circuit breakers, capacitors, or cables.
when the tests are made in a liquid surrounding medium.
6.4.1.1 The quality of the insulating oil may have an
6.3.4 Keep the electrode surfaces clean and smooth, and appreciable effect upon the test results. In addition to the
freefromprojectingirregularitiesresultingfromprevioustests. dielectric breakdown voltage, mentioned above, particulate
If asperities have developed, they must be removed. contaminants are especially important when very thin speci-
6.3.5 It is important that the original manufacture and mens (25 μm (1 mil) or less) are being tested. Depending upon
subsequent resurfacing of electrodes be done in such a manner the nature of the oil and the properties of the material being
that the specified shape and finish of the electrodes and their tested, other properties, including dissolved gas content, water
edges are maintained. The flatness and surface finish of the content, and dissipation factor of the oil may also have an
electrode faces must be such that the faces are in close contact effect upon the results. Frequent replacement of the oil, or the
with the test specimen over the entire area of the electrodes. use of filters and other reconditioning equipment may be
Surface finish is particularly important when testing very thin necessary to minimize the effect of variations of the quality of
materials which are subject to physical damage from improp- the oil on the test results.
erly finished electrodes. When resurfacing, do not change the 6.4.1.2 Breakdown values obtained using liquids having
transition between the electrode face and any specified edge different electrical properties may not be comparable. (See
radius. X1.4.7.)Iftestsaretobemadeatotherthanroomtemperature,
6.3.6 Whenever the electrodes are dissimilar in size or the bath must be provided with a means for heating or cooling
shape, the one at which the lowest concentration of stress the liquid, and with a means to ensure uniform temperature.
exists, usually the larger in size and with the largest radius, Small baths can in some cases be placed in an oven (see 6.4.2)
should be at ground potential. in order to provide temperature control. If forced circulation of
6.3.7 In some special cases liquid metal electrodes, foil the fluid is provided, care must be taken to prevent bubbles
electrodes, metal shot, water, or conductive coating electrodes from being whipped into the fluid. The temperature shall be
are used. It must be recognized that these may give results maintainedwithin65°Cofthespecifiedtesttemperatureatthe
differing widely from those obtained with other types of electrodes, unless otherwise specified. In many cases it is
electrodes. specified that specimens to be tested in insulating oil are to be
6.3.8 Because of the effect of the electrodes on the test previously impregnated with the oil and not removed from the
results, it is frequently possible to obtain additional informa- oilbeforetesting(seePracticeD2413).Forsuchmaterials,the
tion as to the dielectric properties of a material (or a group of bath must be of such design that it will not be necessary to
materials) by running tests with more than one type of expose the specimens to air before testing.
electrode. This technique is of particular value for research 6.4.2 If tests in air are to be made at other than ambient
testing. temperature or humidity, an oven or controlled humidity
6.4 Surrounding Medium—The document calling for this chamber must be provided for the tests. Ovens meeting the
test method should specify the surrounding medium and the requirementsofSpecificationD 5423andprovidedwithmeans
test temperature. Since flashover must be avoided and the for introducing the test voltage will be suitable for use when
effects of partial discharges prior to breakdown mimimized, only temperature is to be controlled.
even for short time tests, it is often preferable and sometimes 6.4.3 Testsingassesotherthanairwillgenerallyrequirethe
necessary to make the tests in insulating liquid (see 6.4.1). use of chambers that can be evacuated and filled with the test
Breakdown values obtained in insulating liquid may not be gas, usually under some controlled pressure. The design of
comparable with those obtained in air. The nature of the such chambers will be determined by the nature of the test
insulating liquid and the degree of previous use may influence program to be undertaken.

D 149 – 97a (2004)
6.5 Test Chamber—The test chamber or area in which the 8.2 Sampling procedures for quality control purposes
tests are to be made shall be of sufficient size to hold the test should provide for gathering of sufficient samples to estimate
equipment, and shall be provided with interlocks to prevent both the average quality and the variability of the lot being
accidental contact with any electrically energized parts. A examined; and for proper protection of the samples from the
number of different physical arrangements of voltage source, time they are taken until the preparation of the test specimens
measuring equipment, baths or ovens, and electrodes are in the laboratory or other test area is begun.
possible, but it is essential that (1) all gates or doors providing 8.3 For the purposes of most tests it is desirable to take
access to spaces in which there are electrically energized parts samples from areas that are not immediay adjacent to
be interlocked to shut off the voltage source when opened; ( 2) obvious defects or discontinuities in the material. The outer
clearances are sufficiently large that the field in the area of the few layers of roll material, the top sheets of a package of
electrodes and specimen are not distorted and that flashovers sheets, or material immediay next to an edge of a sheet or
and partial discharges (corona) do not occur except between roll should be avoided, unless the presence or proximity of
the test electrodes; and (3) insertion and replacement of defects or discontinuities is of interest in the investigation of
specimens between tests be as simple and convenient as the material.
possible.Visualobservationoftheelectrodesandtestspecimen 8.4 The sample should be large enough to permit making as
during the test is frequently desirable. many individual tests as may be required for the particular
material (see 12.4).
7. Hazards
9. Test Specimens
7.1 Warning—Lethal voltages may be present during this
9.1 Preparation and Handling:
test. It is essential that the test apparatus, and all associated
9.1.1 Prepare specimens from samples collected in accor-
equipment that may be electrically connected to it, be properly
dance with Section 8.
designed and installed for safe operation. Solidly ground all
9.1.2 When flat-faced electrodes are to be used, the surfaces
electrically conductive parts that any person might come into
of the specimens which will be in contact with the electrodes
contact with during the test. Provide means for use at the
shall be smooth parallel planes, insofar as possible without
completion of any test to ground any parts which: were at high
actual surface machining.
voltage during the test; may have acquired an induced charge
9.1.3 The specimens shall be of sufficient size to prevent
duringthetest;mayretaina chargeeven after disconnection of
flashover under the conditions of test. For thin materials it may
the voltage source. Thoroughly instruct all operators in the
be convenient to use specimens large enough to permit making
proper way to conduct tests safely. When making high-voltage
more than one test on a single piece.
tests, particularly in compressed gas or in oil, the energy
9.1.4 For thicker materials (usually more than 2 mm thick)
released at breakdown may be sufficient to result in fire,
the breakdown strength may be high enough that flashover or
explosion, or rupture of the test chamber. Design test equip-
intense surface partial discharges (corona) may occur prior to
ment, test chambers, and test specimens so as to minimize the
breakdown. Techniques that may be used to prevent flashover,
possibility of such occurrences and to eliminate the possibility
or to reduce partial discharge (corona) include:
of personal injury.
9.1.4.1 Immerse the specimen in insulating oil during the
7.2 Warning—Ozone is a physiologically hazardous gas at
test. See X1.4.7 for the surrounding medium factors influenc-
elevated concentrations. The exposure limits are set by gov-
ingbreakdown.Thismaybenecessaryforspecimensthathave
ernmental agencies and are usually based upon recommenda-
not been dried and impregnated with oil, as well as for those
tions made by the American Conference of Governmental
7
whichhavebeenpreparedinaccordancewithPracticeD 2413,
Industrial Hygienists. Ozone is likely to be present whenever
for example. (See 6.4.)
voltagesexistwhicharesufficienttocausepartial,orcomplete,
9.1.4.2 Machinearecessordrillaflat-bottomholeinoneor
discharges in air or other atmospheres that contain oxygen.
both surfaces of the specimen to reduce the test thickness. If
Ozone has a distinctive odor which is initially discernible at
dissimilar electrodes are used (such as Type 6 of Table 1) and
low concentrations but sustained inhalation of ozone can cause
only one surface is to be machined, the larger of the two
temporary loss of sensitivity to the scent of ozone. Because of
electrodes should be in contact with the machined surface.
thisitisimportanttomeasuretheconcentrationofozoneinthe
Caremustbetakeninmachiningspecimensnottocontaminate
atmosphere, using commercially available monitoring devices,
or mechanically damage them.
whenever the odor of ozone is persistently present or when
9.1.4.3 Apply seals or shrouds around the electrodes, in
ozone generating conditions continue. Use appropriate means,
contact with the specimen to reduce the tendency to flashover.
such as exhaust vents, to reduce ozone concentrations to
9.1.5 Materials that are not in flat sheet form shall be tested
acceptable levels in working areas.
using specimens (and electrodes) appropriate to the material
8. Sampling and the geometry of the sample. It is essential that for these
materials both the specimen and the electrodes be defined in
8.1 The detailed sampling procedure for the material being
the specification for the material.
tested should be defined in the specification for that material.
9.1.6 Whatever the form of the material, if tests of other
than surface-to-surface puncture strength are to be made,
7 define the specimens and the electrodes in the specification for
Available from the American Conference of Governmental Industrial Hygien-
ists, Building No. D-7, 6500 Glenway Ave., Cincinnati, OH 45211. the material.

D 149 – 97a (2004)
9.2 In nearly all cases the actual thickness of the test
specimenisimportant.Unlessotherwisespecified,measurethe
thickness after the test in the immediate vicinity of the area of
breakdown. Measurements shall be made at room temperature
(25 6 5°C), using the appropriate procedure of Test Methods
D374.
10. Calibration
10.1 In making calibration measurements, take care that the
valuesofvoltageattheelectrodescanbedeterminedwithinthe
accuracy given in 6.2, with the test specimens in the circuit. Rates
(V/s) 6 20 %
10.2 Use an independently calibrated voltmeter attached to
100
the output of the test voltage source to verify the accuracy of 200
500
the measuring device. Electrostatic voltmeters, voltage divid-
1000
ers,orpotentialtransformershavingcomparableaccuracymay
2000
be used for calibration measurement. 5000
10.3 At voltages above about 12 kV rms (16.9 kV peak) a FIG. 1 Voltage Profile of the Short-Time Test
sphere gap may be used to calibrate the readings of the
voltage-measuring device. Follow procedures as specified in
ANSI C68.1 in such calibration.
occasionalaveragetimetobreakdownfallingoutsidetherange
of 10 to 20 s. In this case, the times to failures shall be made
11. Conditioning
a part of the report.
11.1 The dielectric strength of most solid insulating mate- 12.2.1.3 In running a series of tests comparing different
rials is influenced by temperature and moisture content. Mate- material, the same rate-of-rise shall be used with preference
rials so affected should be brought to equilibrium with an given to a rate that allows the average time to be between 10
atmosphere of controlled temperature and relative humidity and 20 s. If the time to breakdown cannot be adhered to, the
before testing. For such materials, the conditioning should be time shall be made a part of the report.
included in the standard referencing this test method. 12.2.2 Method B, Step-by-Step Test—Apply voltage to the
11.2 Unless otherwise specified, follow the procedures in test electrodes at the preferred starting voltage and in steps and
Practice D618. duration as shown in Fig. 2 until breakdown occurs.
12.2.2.1 From the list in Fig. 2, select the initial voltage, V ,
11.3 For many materials the moisture content has more s
to be the one closest to 50 % of the experimentally determined
effect on dielectric strength than does temperature. Condition-
or expected breakdown voltage under the short time test.
ing times for these materials should be sufficiently long to
12.2.2.2 If an initial voltage other than one of the preferred
permit the specimens to reach moisture equilibrium as well as
values listed in Fig. 2 is selected, it is recommended that the
temperature equilibrium.
voltage steps be 10% of the preferred initial voltage immedi-
11.4 If the conditioning atmosphere is such that condensa-
ay below the selected value.
tionoccursonthesurfaceofthespecimens,itmaybedesirable
12.2.2.3 Apply the initial voltage by increasing the voltage
to wipe the surfaces of the specimens immediay before
from zero as rapidly as can be accomplished without introduc-
testing. This will usually reduce the probability of surface
ing a peak voltage exceeding that permitted in 6.1.3. Similar
flashover.
requirements shall apply to the procedure used to increase the
voltagebetweensuccessivesteps.Aftertheinitialstep,thetime
12. Procedure
required to raise the voltage to the succeeding step shall be
12.1 (Caution—see Section 7 before commencement of
counted as part of the time at the succeeding step.
any test.)
12.2.2.4 If breakdown occurs while the voltage is being
12.2 Methods of Voltage Application:
increased to the next step, the specimen is described as having
12.2.1 Method A, Short-Time Test—Apply voltage uni- sustained a dielectric withstand voltage, V , equal to the
ws
formlytothetesectrodesfromzeroatoneoftheratesshown voltage of the step just ended. If breakdown occurs prior to the
inFig.1untilbreakdownoccurs.Usetheshort-timetestunless end of the holding period at any step, the dielectric withstand
otherwise specified. voltage,V ,forthespecimenistakenasthevoltageatthelast
ws
12.2.1.1 When establishing a rate initially in order for it to completedstep.Thevoltageatbreakdown,V ,istobeusedto
bd
beincludedinanewspecification,selectaratethat,foragiven calculate dielectric breakdown strength. The dielectric with-
set of specimens, will give an average time to breakdown of stand strength is to be calculated from the thickness and the
between 10 and 20 s. It may be necessary to run one or two dielectric withstand voltage, V . (See Fig. 2.)
ws
preliminary tests in order to determine the most suitable 12.2.2.5 It is desirable that breakdown occur in four to ten
rate-of-rise. For many materials a rate of 500 V/s is used. steps, but in not less than 120 s. If failure occurs at the third
12.2.1.2 If the document referencing this test method speci- steporless,orinlessthan120s,whicheverisgreater,onmore
fied a rate-of-rise, it shall be used consistently in spite of thanonespecimeninagroup,thetestsshouldberepeatedwith
6

D 149 – 97a (2004)
Rates (V/s) 6 20 % Constraints
1 tbd > 120 s
2
5
Preferred starting voltages, V are 0.25, 0.50, 1, 2, 5, 10, 20, 50, and 100 kV.
s
10 Vbd = > 1.5 Vs
Step Voltage 12.5
when Increment 20
A
Vs(kV) is (kV) 25
50
5 or less 10 % of Vs
100
over 5 to 10 0.50
over 10 to 25 1 FIG. 3 Voltage Profile of Slow Rate-of-Rise Test
over 25 to 50 2
over 50 to 100 5
over 100 10
greater than 2.5 times the initial value (and at a time of over
A
Vs = 0.5 ( Vbd for Short-Time Test) unless constraints cannot be met.
________________________________________________________________ 120 s), increase the initial voltage.
Constraints
12.3 Criteria of Breakdown—Dielectric failure or dielectric
(t 1 - t0)=(t2 - t1) = ... = (60 6 5)s
Alternate step times, (20 6 3)s and (300 6 10)s breakdown (as defined in Terminology D 1711) consists of an
120s # t # 720s, for 60s steps
bd increase in conductance, limiting the electric field that can be
________________________________________________________________
sustained. This phenomenon is most commonly evidenced
FIG. 2 Voltage Profile of Step-by-Step Test
duringthetestbyanabruptvisibleandaudiblerupturethrough
the thickness of the specimen, resulting in a visible puncture
a lower initial voltage. If failure does not occur before the and decomposition of the specimen in the breakdown area.
twelfth step or greater than 720 s, increase the initial voltage. This form of breakdown is generally irreversible. Repeated
12.2.2.6 Record the initial voltage, the voltage steps, the applicationsofvoltagewillsometimesresultinfailureatlower
breakdown voltage, and the length of time that the breakdown
voltages (sometimes unmeasurably low), usually with addi-
voltage was held. If failure occurred while the voltage was
tional damage at the breakdown area. Such repeated applica-
being increased to the starting voltage the failure time shall be
tions of voltage may be used to give positive evidence of
zero.
breakdown and to make the breakdown path more visible.
12.2.2.7 Other time lengths for the voltage steps may be
12.3.1 Arapid rise in leakage current may result in tripping
specified, depending upon the purpose of the test. Commonly
of the voltage source without visible decomposition of the
used lengths are 20 s and 300 s (5 min). For research purposes,
specimen. This type of failure, usually associated with slow-
it may be of value to conduct tests using more than one time
rise tests at elevated temperatures, may in some cases be
interval on a given material.
reversible,thatis,recoveryofthedielectricstrengthmayoccur
12.2.3 Method C, Slow Rate-of-Rise Test—Apply voltage to
the test electrodes, from the starting voltage and at the rate if the specimen is allowed to cool to its original test tempera-
shown in Fig. 3 until breakdown occurs. ture before reapplying voltage. The voltage source must trip
12.2.3.1 Selecttheinitialvoltagefromshort-timetestsmade rapidlyatrelativelylowcurrentforthistypeoffailuretooccur.
as specified in 12.2.1. The initial voltage shall be reached as 12.3.2 Tripping of the voltage source may occur due to
specified in 12.2.2.3.
flashover, to partial discharge current, to reactive current in a
12.2.3.2 Use the rate-of-voltage rise from the initial value
highcapacitancespecimen,ortomalfunctioningofthebreaker.
specified in the document calling for this test method. Ordi-
Such interruptions of the test do not constitute breakdown
narily the rate is selected to approximate the average rate for a
(except for flashover tests) and should not be considered as a
step-by-step test.
satisfactory test.
12.2.3.3 Ifmorethanonespecimenofagroupofspecimens
12.3.3 If the breaker is set for too high a current, or if the
breaks down in less than 120 s, reduce either the initial voltage
breaker malfunctions, excessive burning of the specimen will
or the rate-of-rise, or both.
occur.
12.2.3.4 Ifmorethanonespecimenofagroupofspecimens
breaks down at less than 1.5 times the initial voltage, reduce 12.4 Number of Tests—Make five breakdowns unless oth-
the initial value. If breakdown repeatedly occurs at a value erwise specified for the particular material.

D 149 – 97a (2004)
13. Calculation 15. Precision and Bias
13.1 CalculateforeachtestthedielectricstrengthinkV/mm 15.1 The results of an interlaboratory study with four
or V/mil at breakdown, and for step-by-step tests, the gradient laboratories and eight materials are summarized in Table 2.
at the highest voltage step at which breakdown did not occur. This study made use of one electrode system and one test
8
13.2 Calculate the average dielectric strength and the stan- medium.
dard deviation, or other measure of variability. 15.2 Single-Operator Precision—Depending upon the vari-
ability of the material being tested, the specimen thickness,
14. Report
method of voltage application, and the extent to which tran-
14.1 Report the following information: sient voltage surges are controlled or suppressed, the coeffi-
14.1.1 Identification of the test sample. cientofvariation(standarddeviationdividedbythemean)may
14.1.2 For Each Specimen: varyfromalow1%toashighas20 %ormore.Whenmaking
14.1.2.1 Measured thickness, duplicate tests on five specimens from the same sample, the
14.1.2.2 Maximum voltage withstood (for step-by-step coefficient of variation usually is less than 9 %.
tests), 15.3 Multilaboratory Precision—The precision of tests
14.1.2.3 Dielectric breakdown voltage, made in different laboratories (or of tests made using different
14.1.2.4 Dielectric strength (for step-by-step tests), equipment in the same laboratory) is variable. Using identical
14.1.2.5 Dielectric breakdown strength, and
A
TABLE 2 Dielectric Strength Data Summary From Four Laboratories
Dielectric Strength (V/mil)
Thickness Standard Coefficient of
Material
(in. nom.) Deviation Variation (%)
mean max min
Polyethylene 0.001 4606 5330 4100 332 7.2
Terephthalate
Polyethylene 0.01 1558 1888 1169 196 12.6
Terephthalate
Fluorinated 0.003 3276 3769 2167 333 10.2
Ethylene
Propylene
Fluorinated 0.005 2530 3040 2140 231 9.1
Ethylene
Propylene
PETP fiber 0.025 956 1071 783 89 9.3
reinforced
epoxy resin
PETP fiber 0.060 583 643 494 46 7.9
reinforced
epoxy resin
Epoxy-Glass 0.065 567 635 489 43 7.6
Laminate
Crosslinked 0.044 861 948 729 48 5.6
Polyethylene
Average 8.7
A
Tests performed with specimens in oil using Type 2 electrodes (see Table 1).
14.1.2.6 Location of failure (center of electrode, edge, or types of equipment and controlling specimen preparation,
outside). electrodes and testing procedures closely, the single-operator
14.1.3 For Each Sample: precision is approachable. When making a direct comparison
14.1.3.1 Average dielectric withstand strength for step-by- ofresultsfromtwoormorelaboratories,evaluatetheprecision
step test specimens only, between the laboratories.
14.1.3.2 Average dielectric breakdown strength,
15.4 If the material under test, the specimen thickness, the
14.1.3.3 Indication of variability, preferably the standard
electrode configuration, or the surrounding medium differs
deviation and coefficient of variation,
from those listed in Table 1, or if the failure criterion of the
14.1.3.4 Description of test specimens,
current-sensing element of the test equipment is not closely
14.1.3.5 Conditioning and specimen preparation,
controlled, the precisions cited in 15.2 and 15.3 may not be
14.1.3.6 Ambient atmosphere temperature and relative hu-
realized. Standards which refer to this method should deter-
midity,
mineforthematerialwithwhichthatstandardisconcernedthe
14.1.3.7 Surrounding medium,
applicability of this precision statement to that particular
14.1.3.8 Test temperature,
material. Refer to 5.4-5.8 and 6.1.6.
14.1.3.9 Description of electrodes,
14.1.3.10 Method of voltage application,
14.1.3.11 If specified, the failure criterion of the current-
sensing element, and 8
The complete report is available from ASTM International. Request RR:D09-
14.1.3.12 Date of test. 1026.

D 149 – 97a (2004)
15.5 Use special techniques and equipment for materials 16. Keywords
having a thickness of 0.001 in. or less.The electrodes must not
16.1 breakdown; breakdown voltage; calibration; criteria of
damage the specimen upon contact. Accuray determine the
breakdown; dielectric breakdown voltage; dielectric failure;
voltage at breakdown.
dielectric strength; electrodes; flashover; power frequency;
15.6 Bias—This test method does not determine the intrin-
process-control testing; proof testing; quality-control testing;
sic dielectric strength. The test values are dependent upon
rapid rise; research testing; sampling; slow rate-of-rise; step-
specimen geometry, electrodes, and other variable factors, in
by-step; surrounding medium; voltage withstand
addition to the properties of the sample, so that it is not
possible to make a statement of bias.
APPENDIXES
(Nonmandatory Information)
X1. SIGNIFICANCE OF THE DIELECTRIC STRENGTH TEST
X1.1 Introduction directly between the electrodes. Weak spots within the volume
under stress sometimes determine the test results.
X1.1.1 A brief review of three postulated mechanisms of
breakdown, namely: (1) the discharge or corona mechanism,
X1.4 Influence of Test and Specimen Conditions
(2)thethermalmechanism,and(3)theintrinsicmechanism,as
well as a discussion of the principal factors affecting tests on
X1.4.1 Electrodes— In general, the breakdown voltage will
practical dielectrics, are given here to aid in interpreting the
tend to decrease with increasing electrode area, this area effect
data. The breakdown mechanisms usually operate in combina-
being more pronounced with thin test specimens. Test results
tionratherthansingly.Thefollowingdiscussionappliesonlyto
are also affected by the electrode geometry. Results may be
solid and semisolid materials.
affected also by the material from which the electrodes are
constructed, since the thermal and discharge mechanism may
X1.2 Postulated Mechanisms of Dielectric Breakdown
be influenced by the thermal conductivity and the work
X1.2.1 Breakdown Caused by Electrical Discharges—In function, respectively, of the electrode material. Generally
many tests on commercial materials, breakdown is caused by speaking, the effect of the electrode material is difficult to
electrical discharges, which produce high local fields. With
establish because of the scatter of experimental data.
solid materials the discharges usually occur in the surrounding
X1.4.2 Specimen Thickness—The dielectric strength of
medium, thus increasing the test area and producing failure at
solid commercial electrical insulating materials is greatly
or beyond the electrode edge. Discharges may occur in any
dependentuponthespecimenthickness.Experiencehasshown
internal voids or bubbles that are present or may develop.
that for solid and semi-solid materials, the dielectric strength
These may cause local erosion or chemical decomposition.
varies inversely as a fractional power of the specimen thick-
These processes may continue until a complete failure path is
ness, and there is a substantial amount of evidence that for
formed between the electrodes.
relatively homogeneous solids, the dielectric strength varies
X1.2.2 Thermal Breakdown—Cumulative heating develops
approximay as the reciprocal of the square root of the
inlocalpathswithinmanymaterialswhentheyaresubjectedto
thickness. In the case of solids that can be melted and poured
high electric field intensities, causing dielectric and ionic
to solidify between fixed electrodes, the effect of electrode
conduction losses which generate heat more rapidly than can
separationislessclearlydefined.Sincetheelectrodeseparation
be dissipated. Breakdown may then occur because of thermal
can be fixed at will in such cases, it is customary to perform
instability of the material.
dielectricstrengthtestsonliquidsandusuallyonfusiblesolids,
X1.2.3 Intrinsic Breakdown—If electric discharges or ther-
with electrodes having a standardized fixed spacing. Since the
mal instability do not cause failure, breakdown will still occur
when the field intensity becomes sufficient to accelerate elec- dielectric strength is so dependent upon thickness it is mean-
trons through the material. This critical field intensity is called ingless to report dielectric strength data for a material without
the intrinsic dielectric strength. It cannot be determined by this stating the thickness of the test specimens used.
test method, although the mechanism itself may be involved. X1.4.3 Temperature—The temperature of the test specimen
and its surrounding medium influence the dielectric strength,
X1.3 Nature of Electrical Insulating Materials although for most materials small variations of ambient tem-
X1.3.1 Solid commercial electrical insulating materials are perature may have a negligible effect. In general, the dielectric
generally nonhomogeneous and may contain dielectric defects strength will decrease with increasing temperatures, but the
of various kinds. Dielectric breakdown often occurs in an area extent to which this is true depends upon the material under
of the test specimen other than that where the field intensity is test. When it is known that a material will be required to
greatest and sometimes in an area remote from the material function at other than normal room temperature, it is essential

D 149 – 97a (2004)
that the dielectric strength-temperature relationship for the properties are usually such that edge breakdown will generally
material be determined over the range of expected operating occur if the electric strength, E , approaches the value given
s
temperatures. by:
X1.4.4 Time—Test results will be influenced by the rate of
4.2 63
E kV/mm (X1.4)
voltage application. In general, the breakdown voltage will s 5 Sts 1e8sD
tend to increase with increasing rate of voltage application.
In cases of large thickness of specimen and low permittivity
This is to be expected because the thermal breakdown mecha-
of specimen, the term containing t becomes relatively insig-
s
nismistime-dependentandthedischargemechanismisusually
nificant and the product of permittivity and electric strength is
time-dependent, although in some cases the latter mechanism 10
approximay a constant. Whitehead also mentions (p. 261)
may cause rapid failure by producing critically high local field
that the use of moist semiconducting oil can affect an appre-
intensitives.
ciablereductioninedgedischarges.Unlessthebreakdownpath
X1.4.5 Wave Form—In general, the dielectric strength is
between the electrodes is solely within the solid, results in one
influenced by the wave form of the applied voltage.Within the
medium cannot be compared with those in a different medium.
limitsspecifiedinthismethodtheinfluenceofwaveformisnot
It should also be noted that if the solid is porous or capable of
significant.
being permeated by the immersion medium, the breakdown
X1.4.6 Frequency—The dielectric strength is not signifi-
strength of the solid is directly affected by the electrical
cantly influenced by frequency variations within the range of
properties of immersion medium.
commercial power frequencies provided for in this method.
X1.4.8 Relative Humidity—The relative humidity influ-
However, inferences concerning dielectric strength behavior at
ences the dielectric strength to the extent that moisture ab-
other than commercial power frequencies (50 to 60 Hz) must
sorbed by, or on the surface of, the material under test affects
not be made from results obtained by this method.
the dielectric loss and surface conductivity. Hence, its impor-
X1.4.7 Surrounding Medium—Solid insulating materials
tance will depend to a large extent upon the nature of the
havingahighbreakdownvoltageareusuallytestedbyimmers-
material being tested. However, even materials that absorb
ing the test specimens in a liquid dielectric such as transformer
little or no moisture may be affected because of greatly
oil, silicone oil, or chlorofluorocarbons, in order to minimize
increased chemical effects of discharge in the presence of
theeffectsofsurfacedischargespriortobreakdown.Ithasbeen
9 moisture. Except in cases where the effect of exposure on
shownbyS.Whitehead thatinordertoavoiddischargesinthe
dielectric strength is being investigated, it is customary to
surrounding medium prior to reaching the breakdown voltage
control or limit the relative humidity effects by standard
of the solid test specimen, in alternating voltage tests it is
conditioning procedures.
necessary that
2 2 X1.5 Evaluation
E D 1 E D 1 (X1.1)
me8m = m 1 . se8s = s 1
X1.5.1 A fundamental requirement of the insulation in
If the liquid immersion medium is a low loss material, the electrical apparatus is that it withstand the voltage imposed on
criterion simplifies to it in service. Therefore there is a great need for a test to
evaluatetheperformanceofparticularmaterialsathighvoltage
2
E E D 1 (X1.2)
me8m . se8s = s 1 stress. The dielectric breakdown voltage test represents a
and if the liquid immersion medium is a semiconducting convenient preliminary test to determine whether a material
material the criterion becomes merits further consideration, but it falls short of a complete
evaluation in two important respects. First, the condition of a
E 2 f E (X1.3)
msm . p er e0 s
material as installed in apparatus is much different from its
condition in this test, particularly with regard to the configu-
where: ration of the electric field and the area of material exposed to
E = electric strength,
it, corona, mechanical stress, ambient medium, and association
f = frequency,
with other materials. Second, in service there are deteriorating
e and e8 = permittivity,
influences, heat, mechanical stress, corona and its products,
D = dissipation factor, and
contaminants, and so forth, which may reduce the breakdown
s = conductivity (S/m).
voltage far below its value as originally installed. Some of
Subscripts:
these effects can be incorporated in laboratory tests, and a
m refers to immersion medium,
better estimate of the material will result, but the final
r refers to relative,
consideration must always be that of the performance of the
0 refers to free space,
-12 material in actual service.
(e0 =8.854310 F/m) and
X1.5.2 The dielectric breakdown test may be used as a
s refers to solid dielectric.
material inspection or quality control test, as a means of
X1.4.7.1 Whitehead points out that it is therefore desirable
to increase E and ,or , if surface discharges are to be
m em sm
avoided. Transformer oil is usually specified and its dielectric 10
Starr, R. W., “Dielectric Materials Ionization Study” Interim Engineering,
Report No. 5, Index No ME-111273.Available from Naval Sea Systems Command
Technical Library, Code SEA 09B 312, National Center 3, Washington, DC
9
Whitehead, S., Dielectric Breakdown of Solids, Oxford University Press, 1951. 20362-5101.

D 149 – 97a (2004)
inferring other conditions such as variability, or to indicate the test it is the relative value of the breakdown voltage that is
deteriorating processes such as thermal aging. In these uses of important rather than the absolute value.
X2. STANDARDS REFERRING TO TEST METHOD D149
X2.1 Introduction X2.1.2 In some standards which specify that the dielectric
strength or the breakdown voltage is to be determined in
X2.1.1 The listing of documents in this appendix provides
reference to a broad range ofASTM standards concerned with accordance with Test Method D 149, the manner in which the
determination of dielectric strength at power frequencies or reference is made to this test method is not compley in
with elements of test equipment or elements of procedural conformance with the requirements of 5.5. Do not use another
details used to determine this property. While every effort has document, including those listed in this appendix, as a model
been made to include as many as possible of the standards forreferencetothistestmethodunlessthereisconformitywith
referring to Test Method D 149, the list may not be complete, 5.5.
and standards written or revised after publication of this
appendix are not included.

華洋試驗機產品網:http://www.huayangyq.com

 

華洋儀器展覽網:http://www.huayangyq.net

 

華洋儀器化工網:http://m.tzdy369.com.cn

 

華洋儀器百業網:http://www.jlhyyq.cn

 

 

日韩一卡2卡3卡4卡2021免费观看国色天香 | 日韩一卡2卡3卡4卡2021免费观看国色天香 | а√天堂8资源在线官网 | 天天躁日日躁aaaaxxxx | 丁香色欲久久久久久综合网 | 国产真实夫妇交换视频 | www国产精品内射熟女 | 亚洲日韩在线观看免费视频 | 欧美综合自拍亚洲综合图片区 | 69sex久久精品国产麻豆 | 日韩精品久久久久久免费 | 精品人妻无码区在线视频 | 国内揄拍国内精品 | 国产成人精品手机在线观看 | 中国丰满熟妇xxxx性 | 无码aⅴ精品一区二区三区浪潮 | 国产亚洲真人做受在线观看 | 精品久久久久久中文字幕人妻最新 | 久久久久久亚洲精品不卡 | 少妇被又大又粗又爽毛片久久黑人 | 日韩精品无码一区二区三区 | 国产精品乱码一区二区三 | 精品亚洲成a人无码成a在线观看 | 香蕉伊蕉伊中文视频在线 | 波多野结衣初尝黑人 | 日本不卡高字幕在线2019 | 欧美男生射精高潮视频网站 | 超碰人人超碰人人 | 在线无码免费的毛片视频 | 国产乱人伦真实精品视频 | 乱人伦人妻系列 | 久久精品成人一区二区三区 | 精品久久久久久中文字幕人妻最新 | 国产精品av免费观看 | 久久综合亚洲色hezyo国产 | 欧美激情综合色综合啪啪五月 | 好爽好黄的视频 | 亚洲精品一区二区三区不卡 | 精品久久久久久无码中文字幕 | 欧美两根一起进3p做受视频 | 一本色综合亚洲精品蜜桃冫 | 日产a一a区二区www | 蜜桃视频在线观看免费视频网站www | 内射小寡妇无码 | 2022色婷婷综合久久久 | 亚洲人成网亚洲欧洲无码 | 3d动漫精品啪啪一区二区下载 | 国产精品熟妇一区二区三区四区 | 四虎成人精品国产永久免费无码 | www国产精品内射 | 护士人妻hd中文字幕 | 国产精品va在线播放我和闺蜜 | 动漫av纯肉无码免费播放 | 亚洲一线二线三线写真 | 国产亚洲日韩在线a不卡 | 国产精品久久久久久久免费看 | 无码专区人妻系列日韩 | 中文在线√天堂 | 国产熟女精品视频大全 | 成人免费无码av 加比勒色综合久久 | 日韩精品无码一区二区三区 | 久久久久人妻啪啪一区二区 | 国产午夜成人久久无码一区二区 | 男女啪啪无遮挡免费网站 | 国产成人精品视频一区二区不卡 | 免费大片黄在线观看 | 永久免费的av在线电影网无码 | 巨大欧美黑人xxxxbbbb | 欧美性videos高清精品 | 免费女同毛片在线观看 | 2022色婷婷综合久久久 | 中文字幕av一区二区三区 | 亚洲综合欧美色五月俺也去 | 无码人妻精品一区二区三18禁 | 四虎成人精品国产永久免费无码 | 亚洲国产精品成人av在线 | 精品国产va久久久久久久冰 | 中文字幕人成人乱码亚洲电影 | 综合精品欧美日韩国产在线 | 国产情侣真实露脸在线 | 国产精品成人精品久久久 | 国产精品无码无在线观看 | 欧美大片va欧美在线播放 | 亚洲精品久久久久久动漫器材一区 | 国产一区二区三区在线电影 | 人妻熟妇乱又伦精品视频 | 久久精品手机观看 | 男人边吃奶边做好爽免费视频 | 精品国产一区二区三区色欲 | 国产成人精品视频一区二区不卡 | 欧美激情视频一区二区三区免费 | 美女裸体无遮挡免费视频网站 | 免费无码成人av片在线在线播放 | 国产精品人人妻人人爽人人牛 | 亚洲日韩小电影在线观看 | 亚洲人成人伊人成综合网无码 | 亚洲一卡二卡三卡四卡 | 国产精品熟妇一区二区三区四区 | 狠狠色噜噜狠狠狠狠97首创麻豆 | 又色又污又爽又黄的网站 | 日本高清视频www | 热久久美女精品天天吊色 | 国产精品久久久久久久久久久久午夜片 | 亚洲人成电影在线观看影院 | 国模无码一区二区三区 | 亚洲精品无码久久久久久久 | 高潮射精日本韩国在线播放 | 国产精品永久免费 | 天堂а√在线地址在线 | www国产精品内射 | 免费的黄网站在线观看 | 丰满岳跪趴高撅肥臀尤物在线观看 | 一本大道无码日韩精品影视_ | 国产乱子伦精品无码码专区 | 中文字幕乱码人妻综合二区三区 | 无遮挡啪啪摇乳动态图gif | 98久9在线 | 视频 | 免费的黄网站在线观看 | 九九视频在线观看视频6 | 久久无码人妻精品一区二区三区 | 男女无遮挡xx00动态图120秒 | 美女裸体无遮挡免费视频网站 | 东北少妇不带套对白 | 任我爽精品视频在线播放 | 久久综合av色老头免费观看 | 免费女同毛片在线观看 | 韩国三级中文字幕hd久久精品 | 少妇高清精品毛片在线视频 | 国产精品综合色区在线观看 | 好爽好黄的视频 | 国产成人精品日本亚洲专区 | 国产精品无码电影在线观看 | 无码熟妇人妻av在线电影 | 欧美成人一区二区三区在线视频 | 大白肥妇bbvbbw高潮 | 国产一区二区在线视频 | 亚洲综合精品第一页 | 色噜噜狠狠狠综合曰曰曰 | 人成午夜大片免费视频 | av怡红院一区二区三区 | 国产免费一区二区三区免费视频 | 五月激情婷婷丁香综合基地 | 粉嫩av国产一区二区三区 | 久久精品亚洲日本波多野结衣 | 精品丰满人妻无套内射 | 一区二区三区无码免费看 | 亚洲男男无套gv大学生 | 中文文字幕文字幕亚洲色 | 性高湖久久久久久久久aaaaa | 亚洲精品国产精品乱码在线观看 | 欧美激情视频一区二区三区免费 | 无码人妻久久一区二区三区蜜桃 | 国产老熟妇精品观看 | 超碰人人超碰人人 | 亚洲第一女人av 国语做受对白xxxxx在线 | 中文午夜人妻无码看片 | 久青草国产在视频在线观看 | 亚洲国产午夜精品理论片妓女 | 欧美性猛交久久久乱大交小说 | 欧洲吸奶大片在线看 | 狠狠色噜噜狠狠狠888米奇视频 | 免费无码不卡视频在线观看 | 国产极品粉嫩福利姬萌白酱 | 天天躁日日躁狠狠躁一区 | 久久久一本精品99久久精品66 | 强奷乱码中文字幕熟女导航 | 香港曰本韩国三级网站 | 99久热在线精品视频观看 | 日日躁夜夜躁白天躁晚上 | 激情射精爽到偷偷c视频无码 | 无码办公室丝袜ol中文字幕 | 国产在线精品一区二区 | 久久久久久九九99精品 | 国产精品久久久久久久久久免费看 | 国产第一页浮力影院入口 | 欧美男生射精高潮视频网站 | 欧美xxxx黑人又粗又长精品 | 97丨九色丨国产人妻熟女 | 99精品久久99久久久久 | 婷婷色中文字幕综合在线 | 欧美牲交a欧美牲交aⅴ免费真 | 蜜桃视频在线观看免费视频网站www | 色综合色综合色综合色欲 | 乌克兰粉嫩xxx极品hd | 色与欲影视天天看综合网 | 5个黑人躁我一个视频 | 亚洲中文字幕无码久久 | 国产午夜成人久久无码一区二区 | 欧产日产国产精品 | 青青草原精品99久久精品66 | 野狼av午夜福利在线 | 精品国产99高清一区二区三区 | 欧美黑人大战白嫩在线 | 巨大乳做爰视频在线看 | 国产精品va在线播放我和闺蜜 | 国产人妻久久精品二区三区特黄 | 国产一精品一av一免费爽爽 | 中日韩高清无专码区2021 | 亚洲日韩一页精品发布 | 又色又污又爽又黄的网站 | 亚洲国产精品无码专区 | 久久99国产精一区二区三区 | 亚洲国产婷婷六月丁香 | 色综合a怡红院怡红院 | 久久99国产精一区二区三区 | 国产第一页浮力影院入口 | 成人做爰100部片免费下载 | 九九久久精品无码专区 | 国产成人精品手机在线观看 | 国产精品乱码一区二区三 | 免费羞羞午夜爽爽爽视频 | 免费羞羞午夜爽爽爽视频 | 搡老女人老妇女老熟妇 | 亚洲精品国产av天美传媒 | 亚洲人成色7777在线观看 | 少妇高潮毛片色欲ava片 | 久久国产精久久精产国 | 最大胆裸体人体牲交免费 | 国产女主播高潮在线播放 | 成人网站免费观看入口 | av怡红院一区二区三区 | 人成午夜大片免费视频 | 熟女人妻在线视频 | 国产成人无码精品一区在线观看 | 国产肥白大熟妇bbbb视频 | 亚洲日韩一页精品发布 | 日产a一a区二区www | 人妻熟女αⅴ一区二区三区 | 少妇无码太爽了不卡视频在线看 | 国产成人艳妇aa视频在线 | 亚洲精品成人网站在线观看 | 欧美性白人极品1819hd | 精品国产一区二区三区2021 | 国产成人无码18禁午夜福利p | 国产精品亚洲а∨无码播放不卡 | 丰满人妻熟妇乱又伦精品 | 99久久无色码中文字幕人妻蜜柚 | 亚洲va中文字幕无码毛片 | 6080yyy午夜理论片中无码 | 亚洲午夜精品a片久久www慈禧 | 日本一卡2卡三卡4卡免费网站 | 久久精品人妻一区二区三区 | 色播亚洲视频在线观看 | 97久久超碰精品视觉盛宴 | 天天躁日日躁狠狠躁视频2021 | 精品亚洲国产成人av | 日本不卡三区 | 久久精品国产丝袜人妻 | 国产精品久久久久久久免费看 | 天天躁日日躁狠狠躁一区 | 亚洲综合无码无在线观看 | 怡红院a∨人人爰人人爽 | 人人妻人人澡人人爽超污 | 久久国产精品一国产精品 | 曰本极品少妇videossexhd | 国语做受对白xxxxx在线 | 后入内射欧美99二区视频 | 女性高爱潮视频 | 色狠狠色狠狠综合天天 | 欧洲多毛裸体xxxxx | 5个黑人躁我一个视频 | 琪琪午夜伦埋影院77 | 精品一卡二卡三卡 | 狠狠做五月深爱婷婷 | 一本一道精品欧美中文字幕 | 婷婷久久综合九色综合绿巨人 | 日本人妻丰满熟妇久久久久久 | 国语做受对白xxxxx在线 | 日本不卡三区 | 99热在线精品国产观看 | 欧美性大战久久久久久久 | 中文在线а√在线 | 嫩草国产福利视频一区二区 | 精品人妻av一区二区三区 | 国产乱子伦视频一区二区三区 | 色五月丁香五月综合五月4438 | 国产精品成人精品久久久 | 久久久久麻豆v国产精华液好用吗 | 国产精品激情av久久久青桔 | 无码一区二区三区亚洲人妻 | 亚洲精品乱码一区二区三区 | 国产福利视频 | 狠狠色噜噜狠狠狠888米奇视频 | 亚洲日韩小电影在线观看 | 伊人www22综合色 | 亚洲精品午夜无码专区 | 久久久久黑人强伦姧人妻 | 国产精品成人精品久久久 | 国产精品videossex国产高清 | 久久精品人妻一区二区三区 | 天天爽夜夜爽人人爽 | 久久精品国产成人av | 国产精品国产三级国产av中文 | 美女扒开大腿让男人桶 | 无码办公室丝袜ol中文字幕 | 人人狠狠综合久久亚洲 | 久久久久人妻精品一区 | 一本色道久久88加勒比—综合 | 无码人妻aⅴ一区二区三区有奶水 | 亚洲在av人极品无码网站 | 另类老妇奶性生bbwbbw | 国产乱子轮xxx农村 | 亚洲精品乱码一区二区三区 | 精品少妇一区二区三区免费观 | 成人区精品一区二区婷婷 | 欧洲亚洲色一区二区色99 | 亚洲精品午夜无码专区 | 久久人人玩人妻潮喷内射人人 | 久久久久麻豆v国产精华液好用吗 | 欧美激情视频一区二区三区免费 | 怡红院av亚洲一区二区三区h | 国产精品久久久久av | 天堂在线www天堂 | 国产伦精品一区二区三区免.费 | 国产精品无码无在线观看 | 亚洲国产婷婷六月丁香 | 精品久久久久久中文字幕人妻最新 | 精品国产va久久久久久久冰 | 国产精品无码电影在线观看 | 一二三四视频社区在线 | 激情射精爽到偷偷c视频无码 | 少妇久久久久久被弄高潮 | 国产成人无码精品一区在线观看 | 国产成人免费爽爽爽视频 | 人妻熟妇乱又伦精品视频 | 欧美激情综合色综合啪啪五月 | 久久久久久国产精品免费免费男同 | 中文字幕av一区二区三区 | 亚洲成av人片一区二区三区 | 欧美香蕉爽爽人人爽 | 欧产日产国产精品 | 亚洲乱亚洲乱妇无码麻豆 | 国产精品va无码免费 | 高潮又爽又无遮挡又免费 | 国产亚洲精品一区二区三区 | 欧美精品videosex性欧美 | 久久国产精久久精产国 | 极品无码av国模在线观看 | 亚洲欧美国产欧美色欲 | 激情偷乱人成视频在线观看 | 性一交一乱一伦一色一情孩交 | 高潮毛片又色又爽免费 | 99精品一区二区三区无码吞精 | 国语自产少妇精品视频 | 无码免费一区二区三区免费播放 | 久久成人麻豆午夜电影 | 中文字幕亚洲无线码在线一区 | 精品欧美一区二区在线观看 | 亚洲精品无码久久久久久 | 中文字幕精品久久久久人妻红杏1 | 精品亚洲国产成av人片传媒 | 久久综合五月丁香久久激情 | 中文字幕日本人妻久久久免费 | 国产美女在线精品免费观看 | 国产女主播高潮在线播放 | 高潮射精日本韩国在线播放 | 免费无码成人av在线播放不卡 | 人妻无码一区二区不卡无码av | 暴力调教一区二区三区 | 国产98在线 | 免费、 | 特黄做受又粗又大又硬老头 | 亚洲另类无码专区首页 | 另类老妇奶性生bbwbbw | 韩国午夜理论在线观看 | 欧美亚洲国产精品久久高清 | 狼人无码精华av午夜精品 | www国产精品内射熟女 | 国产成人午夜福利在线观看 | 国产午夜成人免费看片 | 国产精品宾馆在线精品酒店 | 爱情岛论坛网亚洲品质 | 男女后式激烈动态图片 | 久久精品日日躁夜夜躁 | 免费无码成人av片在线在线播放 | 69精品人人人人 | 欧洲熟妇色xxxx欧美老妇 | 久青草无码视频在线播放 | 亚洲爆乳无码一区二区三区 | 顶级少妇做爰视频在线观看 | 97碰碰碰免费公开在线视频 | 国产精品视频 | 成人伊人精品色xxxx视频 | 欧美深性狂猛ⅹxxx深喉 制服丝袜另类专区制服 | 国产69精品久久久久9999apgf | 久久国产劲暴∨内射新川 | 狠狠人妻久久久久久综合 | 人妻少妇精品一区二区三区 | 人妻av乱片av出轨 | 精品无人区一区二区三区 | 97碰碰碰免费公开在线视频 | 欧洲亚洲色一区二区色99 | 一本色道久久hezyo无码 | 男女下面一进一出无遮挡 | 日韩av无码免费播放 | 欧美丰满熟妇xxxxx | 亚洲国产精品无码专区 | 2020国产成人精品视频 | 精品久久久久久中文字幕人妻最新 | 人人婷婷人人澡人人爽 | 国产成人精品白浆久久69 | 国产在线不卡一区二区三区 | 国产精品永久久久久久久久久 | 欧美人妻aⅴ中文字幕 | 潮喷大喷水系列无码久久精品 | 国产乱子伦视频一区二区三区 | 后入到高潮免费观看 | 中文字幕人成无码人妻综合社区 | 美女国产毛片a区内射 | 国产精品久久久久久久久久免费看 | 亚洲精品456在线播放 | 国产熟睡乱子伦午夜视频 | 无码免费一区二区三区免费播放 | 色噜噜狠狠一区二区三区 | 欧美人与动牲交xxxxbbbb | 和岳每晚弄的高潮嗷嗷叫视频 | 国产一精品一av一免费爽爽 | 久久精品一区二区三区av | 东京热一区二区三区无码视频 | 午夜福利国产成人无码gif动图 | 久久亚洲国产精品五月天婷 | 亚洲人午夜射精精品日韩 | 日本狂喷奶水在线播放212 | 欧美人与性动交g欧美精器 | 久久久久久九九99精品 | 亚洲一线二线三线写真 | 国产又色又爽又黄刺激在线视频 | 欧美性猛交xxxx免费看蜜桃 | 欧洲吸奶大片在线看 | 日韩人妻ol丝袜av一二区 | а√天堂8资源在线官网 | 久久人人爽天天玩人人妻精品 | 免费的黄网站在线观看 | 狠狠躁夜夜躁av网站中文字幕 | 亚欧成a人无码精品va片 | 久久久国产乱子伦精品 | 18禁美女黄网站色大片免费看 | 99国产精品国产精品九九 | 国产精品毛片av在线看 | 18禁美女黄网站色大片免费看 | 国产精品人人做人人爽人人添 | 爱性久久久久久久久 | 精品国产乱码久久久久久影片 | 国产又色又爽又黄刺激在线视频 | 欧洲多毛裸体xxxxx | 久久综合亚洲色hezyo国产 | 插b内射18免费视频 | 久久无码精品一区二区三区 | 亚洲日韩国产一区二区三区 | 2020国产成人精品视频 | 亚洲精品无播放器在线播放 | 欧美性猛交xxx嘿人猛交 | 成人区精品一区二区婷婷 | 久久精品成人一区二区三区 | 日本高清视频www | 男女啪动最猛动态图 | 久久久久人妻啪啪一区二区 | 日韩毛片免费无码无毒视频观看 | 免费做a爰片久久毛片a片 | 欧美丰满熟妇bbbbbb | 色婷婷综合久色aⅴ五区最新 | 国产成人精品一区二区三区视频 | 国产熟妇搡bbbb搡bbbb搡 | 和岳每晚弄的高潮嗷嗷叫视频 | 国产美女裸身网站免费观看视频 | 国产乱对白刺激视频 | 免费羞羞午夜爽爽爽视频 | 一本色道久久88加勒比—综合 | 99久久无码一区人妻a黑 | 亚洲啪啪综合av一区 | 国产成人精品午夜视频 | 久久久精品2019免费观看 | 顶级少妇做爰视频在线观看 | 欧美xxxx黑人又粗又长精品 | 国产精品毛片av在线看 | 亚洲国产美女精品久久久 | 97性无码区免费 | 亚洲国产成人无码av在线 | 日本欧美久久久久免费播放网 | 少妇性l交大片7724com | av免费不卡国产观看 | 免费无码又爽又刺激高潮视频 | 亚洲国产美女精品久久久 | 美女张开腿让男人桶爽 | 熟妇丰满多毛的大隂户 | 亚洲精品国产精华液 | 亚洲成av人片一区二区三区 | 欧美巨波霸乳影院 | 爱性久久久久久久久 | 综合天堂av久久久久久久 | 久久久久久一区国产精品 | 国产精品综合色区在线观看 | 久久精品国产精品青草 | 精品欧美一区二区在线观看 | 亚洲精品无码午夜福利中文字幕 | 99久久综合狠狠综合久久aⅴ | 人妻精品久久无码区 | 宅男噜噜噜66网站在线观看 | 天天爽夜夜爱 | 中国丰满熟妇xxxx性 | 无码免费一区二区三区免费播放 | 少妇无码太爽了不卡视频在线看 | 永久免费的av在线电影网无码 | 国产一区内射最近更新 | 天堂√在线中文官网在线 | 国产精品无码一区二区三区在 | 免费无码av片在线观看 | 国产乱子伦精品无码码专区 | 日韩毛片免费无码无毒视频观看 | 国产美女在线精品免费观看 | 国产免费无码一区二区 | 特黄特色三级在线观看 | 99精品人妻无码专区在线视频区 | 韩国午夜理论在线观看 | 国产精品永久久久久久久久久 | 久久综合av色老头免费观看 | 少妇扒开粉嫩小泬视频 | 最新日韩精品中文字幕 | 精品亚洲国产成av人片传媒 | 色哟哟国产精品免费观看 | 麻豆亚洲一区 | 中文字幕人妻熟女在线 | 欧美性生交大片免费看 | 天天躁日日躁狠狠很躁 | 国产日产欧洲无码视频 | 人妻精品久久无码区 | 国产精品人人妻人人爽人人牛 | 免费无码成人av在线播放不卡 | 国产成人无码视频一区二区三区 | 天天影视色香欲综合久久 | 中文字幕乱码人妻一区二区三区 | 国产亚洲精品岁国产微拍精品 | 亚洲精品456在线播放 | 午夜寂寞少妇aaa片毛片 | 中文字幕精品久久久久人妻红杏1 | 亚洲欧美另类激情综合区 | 另类老妇奶性生bbwbbw | 国产精品久久久久久久免费看 | 欧美牲交a欧美牲交aⅴ免费真 | 中文字幕人成无码人妻综合社区 | 久久精品国产丝袜人妻 | 亚洲精品无播放器在线播放 | 亚洲精品无码久久久久久 | 极品少妇xxxx精品少妇偷拍 | 久久精品国产99精品国产亚洲性色 | 欧美成人一区二区三区在线视频 | 欧美牲交a欧美牲交aⅴ | 日本一区二区三区免费视频 | 久久国产精品99精品国产 | 久久99国产精一区二区三区 | 无码人妻毛片丰满熟妇区毛片 | 国产成人免费视频 | 久久国产色av | 国语自产少妇精品视频 | 国产强被迫伦姧在线观看无码 | 精品久久久久久无码中文字幕 | 日本少妇裸体做爰高潮片 | 国产美女裸身网站免费观看视频 | 国产精品一区二区久久国产 | 野外做受又硬又粗又大视幕 | 潮喷大喷水系列无码久久精品 | 国产成人a亚洲精v品无码 | 久久综合av色老头免费观看 | 无码人妻aⅴ一区二区三区 | 自拍偷在线精品自拍偷99 | 成人午夜免费无码区 | 亚洲人成网亚洲欧洲无码久久 | 少妇高清精品毛片在线视频 | 久久99热人妻偷产国产 | 丰满岳跪趴高撅肥臀尤物在线观看 | 国产成人无码精品一区在线观看 | 亚洲国产精品无码一线岛国 | 久久久久久国产精品免费免费男同 | 天堂а√在线地址在线 | 亚洲精品无码久久久久久 | 韩国午夜理论在线观看 | 亚洲欧美中文字幕在线一区 | 狠狠躁天天躁中文字幕无码 | 2022色婷婷综合久久久 | 肥臀浪妇太爽了快点再快点 | 日本精品啪啪一区二区三区 | 一本色道久久88加勒比—综合 | 无套内射在线无码播放 | 人妻系列av无码专区 | 国产成人精品久久综合 | 99久久综合狠狠综合久久aⅴ | 久久精品日日躁夜夜躁 | 精品无码久久久久久久久久 | 天躁夜夜躁狼狠躁 | 用舌头去添高潮无码视频 | 午夜免费无码福利视频 | 后入内射欧美99二区视频 | 成在线人视频免费视频 | 国产精品久久久久久52avav | 免费羞羞午夜爽爽爽视频 | 嫩草av久久伊人妇女超级a | 国产成人av一区二区三区不卡 | 丰满人妻中伦妇伦精品app | 粉嫩av国产一区二区三区 | 婷婷色中文字幕综合在线 | 2020国产成人精品视频 | 国产熟女精品视频大全 | 国产男小鲜肉同志免费 | 女人下边被添全过视频 | 宅男噜噜噜66网站在线观看 | 色狠狠色狠狠综合天天 | 中文字幕乱码人妻一区二区三区 | 日日噜噜夜夜狠狠va视频 | 国产女人的高潮国语对白 | 欧美疯狂做受xxxx高潮 | 亚洲精品久久久久久久蜜桃 | 一本色道久久88加勒比—综合 | 国产精品99久久免费观看 | 亚洲国产精品无码专区 | 国产精品一区二区久久国产 | 中文文字幕文字幕亚洲色 | 少妇扒开粉嫩小泬视频 | 777精品久无码人妻蜜桃 | 色噜噜狠狠一区二区三区 | 成人毛片100免费观看 | 人人玩人人添人人澡 | 亚洲欧美日本久久综合网站 | 国产精品国产三级国产av中文 | 香蕉伊蕉伊中文视频在线 | 国产成人精品三上悠亚 | 97免费人妻无码视频 | 欧美午夜片欧美片在线观看 | 日本不卡三区 | 全部免费的毛片在线看 | 久久九九日本韩国精品 | 国产欧美日韩精品丝袜高跟鞋 | 一本色道久久88加勒比—综合 | 无码中文字幕波多野结衣 | 日本不卡三区 | 精品人妻少妇一区二区三区 | 人人婷婷人人澡人人爽 | 五十路亲子中出在线观看 | 92国产精品午夜福利 | 亚洲国产成人爱av在线播放 | 曰批全过程免费视频在线观看无码 | 亚洲综合欧美色五月俺也去 | 香港曰本韩国三级网站 | 国产美女裸身网站免费观看视频 | 朝鲜美女黑毛bbw | 国产av福利久久精品can | 国产女人的高潮国语对白 | 美女裸体无遮挡免费视频网站 | 亚洲国产成人无码av在线 | 十八禁无码免费网站 | 欧美人做人爱a全程免费 | 无遮挡h肉动漫在线观看 | 美女扒开大腿让男人桶 | 男人边吃奶边做好爽免费视频 | 精品人妻av一区二区三区 | 欧美性生交大片免费看 | 亚洲精品无码久久久久久久 | 波多野结衣初尝黑人 | 日本丰满熟妇bbxbbxhd | 无码中文字幕波多野结衣 | 天天躁日日躁狠狠很躁 | av天堂亚洲国产av | 男人女人做爽爽18禁网站 | 女人爽到高潮免费看视频 | 日韩人妻无码精品-专区 | 免费体验区试看120秒 | 国产综合有码无码中文字幕 | 中文字幕人妻偷伦在线视频 | 国产suv精品一区二区62 | 爱性久久久久久久久 | 国产欧美日韩精品丝袜高跟鞋 | 国产99视频精品免视看7 | 无码熟妇人妻av在线网站 | 国产午夜精品无码一区二区 | 久久国产免费直播 | 野狼av午夜福利在线 | 最新69国产成人精品视频免费 | 97夜夜澡人人爽人人 | 久青草无码视频在线播放 | 国产一区二区精品久久 | 任你躁x7x7x7x7在线观看 | 日韩午夜理论免费tv影院 | 国产一区二区 | 亚洲精品一区二区三区麻豆 | 亚洲视频一区 | 日本护士毛茸茸 | 无码专区人妻系列日韩 | 中文字幕av一区二区三区 | 18禁美女黄网站色大片免费看 | 手机福利视频 | 用舌头去添高潮无码视频 | 亚洲日韩中文字幕无码一区 | 欧美大片va欧美在线播放 | 中文字幕乱码人妻一区二区三区 | 免费无码成人av在线播放不卡 | 国产精品无码一区二区三区在 | 国产成人免费爽爽爽视频 | 日本亚州视频在线八a | 欧美午夜理伦三级在线观看 | 亚洲欧美中文字幕在线一区 | 日本va在线视频播放 | 精品久久亚洲中文无码 | 三级在线看中文字幕完整版 | 欧洲亚洲色一区二区色99 | 亚洲国产成人爱av在线播放 | 国产免费无码一区二区 | 天躁夜夜躁狼狠躁 | 丰满熟女人妻中文字幕免费 | 亚洲深深色噜噜狠狠爱网站 | 亚洲 欧美 中文 在线 视频 | 欧美两根一起进3p做受视频 | 成人国内精品久久久久影院vr | 成人综合婷婷国产精品久久蜜臀 | 国产男小鲜肉同志免费 | 少妇高潮尖叫黑人激情在线 | 人人狠狠综合久久亚洲婷婷 | 亚洲欧美精品无码一区二区三区 | 色偷偷888欧美精品久久久 | 国产精品久久久久久52avav | 狠狠躁18三区二区一区ai明星 | 午夜寂寞少妇aaa片毛片 | 欧美黑人又粗又大高潮喷水 | 伊人久久综合色 | 精品国产一区二区三区久久影院 | 久久久久人妻精品一区 | 欧美xxxx做受欧美1314 | 免费做a爰片久久毛片a片 | 国产午夜成人免费看片 | 国产精品岛国久久久久 | 天天躁日日躁aaaaxxxx | 国产乱人伦真实精品视频 | 国产强伦姧在线观看无码 | 亚洲va中文字幕无码毛片 | 人妻精品久久无码区 | 性乌克兰xxxx极品 | 国产精品亚洲а∨无码播放不卡 | 欧美男男大粗吊1069 | 色综合99久久久无码国产精品 | 亚洲成av人片一区二区三区 | 乱子伦一区二区三区 | 亚洲精品无码久久久久久久 | 国产免费无码一区二区 | 国产女主播高潮在线播放 | 欧美人与动牲交xxxxbbbb | 玩弄japan白嫩少妇hd小说 | 精品国产va久久久久久久冰 | 男人扒开女人腿桶到爽免费 | 97性无码区免费 | 久久综合五月丁香久久激情 | 国产日韩欧美不卡在线二区 | 久久躁狠狠躁夜夜av | 蜜桃日本免费看mv免费版 | 女性高爱潮视频 | 5个黑人躁我一个视频 | 久久好在线视频 | 97久久超碰精品视觉盛宴 | 鲁死你av资源站 国产精品久久香蕉免费播放 | 色综合色综合色综合色欲 | 成人毛片100免费观看 | 在线无码免费的毛片视频 | 久久综合五月丁香久久激情 | 久久精品成人免费观看 | 国产香港明星裸体xxxx视频 | 国产美女在线精品免费观看 | 欧美亚洲国产精品久久高清 | 国产精品久久久久久亚洲影视 | 亚洲中文字幕无码久久 | 人人狠狠综合久久亚洲婷婷 | 亚洲综合精品第一页 | 国产精品毛片完整版视频 | 久久国产色av | 亚洲男男无套gv大学生 | 久久国产精品99精品国产 | 男女啪动最猛动态图 | 成人网站免费观看入口 | 真人做人试看60分钟免费 | 69sex久久精品国产麻豆 | 中文字幕亚洲精品无码 | 国产日产欧洲无码视频 | 久久精品国产成人av | 欧美精品videosex极品 | 少妇大叫好爽受不了午夜视频 | 久久99精品国产麻豆宅宅 | 久久久久久a亚洲欧洲av | 97性无码区免费 | 丰满人妻熟妇乱又伦精品 | 人成午夜大片免费视频 | 天堂а√在线地址在线 | 玩丰满高大邻居人妻无码 | 国产免费久久精品99久久 | 日韩av无码免费播放 | 亚洲国产天堂久久综合 | 人人婷婷人人澡人人爽 | 国产伦精品一区二区三区免.费 | 久久久日韩精品一区二区 | 亚洲精品乱码一区二区三区 | 性高湖久久久久久久久aaaaa | 国产精品久久久久久久久久久久午夜片 | 中文字幕亚洲无线码在线一区 | 一本色道久久88综合日韩精品 | 久久久国产打桩机 | 亚洲成av人片一区二区梦乃 | 天堂在/线资源中文在线 | 亚洲日韩中文字幕无码一区 | 1000部啪啪未满十八勿入 | 无码办公室丝袜ol中文字幕 | 最大胆裸体人体牲交免费 | 成人国内精品久久久久影院vr | 人人妻人人澡人人爽国产一区 | 国产精品人人妻人人爽人人牛 | 日日躁夜夜躁白天躁晚上 | 777亚洲精品乱码久久久久久 | 中文字幕av一区二区三区 | 噜噜色综合噜噜色噜噜色 | 综合图区亚洲欧美另类图片 | 中文字幕日韩一区二区三区不卡 | 五十路亲子中出在线观看 | 国产亚洲精品无码成人 | 色两性网欧美 | 欧洲肉欲k8播放毛片 | 久久99热人妻偷产国产 | 久久精品手机观看 | 成人午夜福利视频 | 国产av无码专区亚洲版综合 | 欧洲熟妇色xxxx欧美老妇多毛 | 精品人妻av一区二区三区 | 欧洲女人牲交视频免费 | 欧美男生射精高潮视频网站 | 日日碰狠狠添天天爽超碰97 | 亚洲欧美精品无码一区二区三区 | 成人免费无码av 加比勒色综合久久 | а√天堂8资源在线官网 | 成人精品一区二区三区电影 | 欧美性videos高清精品 | 国产乱子伦视频一区二区三区 | 中文综合在线观 | 天码av无码一区二区三区四区 | 亚洲精品乱码久久久久久日本蜜臀 | 久久久久夜夜夜精品国产 | 国产无遮挡裸体免费视频 | 亚洲不卡av不卡一区二区 | 久久久日韩精品一区二区 | 巨大欧美黑人xxxxbbbb | 免费人成在线观看视频高潮 | 无码一区二区三区亚洲人妻 | 欧美大片va欧美在线播放 | 亚洲精品国产av天美传媒 | 久久久精品免费 | 无码精品人妻一区二区三区漫画 | 极品无码国模国产在线观看 | 在线精品自偷自拍无码 | 国产l精品国产亚洲区在线观看 | 亚洲成av人片一区二区梦乃 | 狠狠精品干练久久久无码中文字幕 | 熟女人妻一区二区三区免费看 | 蜜桃日本免费看mv免费版 | 亚洲精品国产精品乱码在线观看 | 特级无码毛片免费视频尤物 | 狠狠久久亚洲欧美专区 | 综合图区亚洲欧美另类图片 | 久久亚洲国产精品五月天婷 | 女人被狂躁60分钟视频 | 成年美女黄网站色大片免费看 | 久久综合a∨色老头免费观看 | 欧美xxxx黑人又粗又长精品 | 久久精品aⅴ无码中文字字幕重口 | 亚洲成av人片久久 | 国产成人精品三上悠亚 | 无码国产色欲xxxx视频 | 久久不见久久见免费视频4 | 人妻少妇无码精品视频区 | 国产精品一区二区手机在线观看 | 日本一卡2卡三卡4卡免费网站 | 久久无码高潮喷水 | 日本阿v免费观看视频 | 无码熟妇人妻av在线电影 | 亚洲欧美在线人成最新 | 色欲久久综合亚洲精品蜜桃 | 2012中文字幕在线视频 | 少妇大叫好爽受不了午夜视频 | 狠狠躁天天躁中文字幕无码 | 天堂va蜜桃一区二区三区 | 男人边吃奶边做好爽免费视频 | 荫道bbwbbb高潮潮喷 | 国产一线二线三线女 | 国产精品va在线播放我和闺蜜 | 人成午夜大片免费视频 | 色偷偷偷在线视频播放 | 色婷婷综合久久久久中文 | 久久久国产打桩机 | 天天干天天日夜夜操 | 天天躁日日躁狠狠躁视频2021 | 久久人人玩人妻潮喷内射人人 | 国产精品99久久久精品无码 | 国产精品视频二区不卡 | 人妻熟妇女的欲乱系列 | 少妇高潮尖叫黑人激情在线 | 亚洲欧美国产双大乳头 | 欧美三级欧美成人高清 | 极品少妇xxxx精品少妇偷拍 | 国产一精品一av一免费爽爽 | 中文字幕精品久久久久人妻红杏1 | 无码人妻精品一区二区三18禁 | 日日婷婷夜日日天干 | 亚洲男男无套gv大学生 | 中文字幕无码毛片免费看 | 日本内射精品一区二区视频 | 婷婷久久综合九色综合绿巨人 | 乱码人妻一区二区三区 | 国产精品永久久久久久久久久 | 欧美性猛交久久久乱大交小说 | 日韩乱码人妻无码中文字幕久久 | 国产精品无码电影在线观看 | 亚洲精品无播放器在线播放 | 久久久久人妻精品一区 | 日本阿v免费观看视频 | 少妇高清精品毛片在线视频 | 国产亚洲真人做受在线观看 | 欧美成人一区二区三区在线视频 | 无码av动漫精品一区二区免费 | 伊人色综合久久天天人手人婷 | 国内精品伊人久久久久av | 五月激情婷婷丁香综合基地 | 久久精品国产成人av | 久久婷婷五月国产色综合 | а天堂8中文最新版在线官网 | 国产清纯在线一区二区 | 蜜臀av无码精品人妻色欲 | 国产成人艳妇aa视频在线 | 亚洲精品无码午夜福利中文字幕 | 色翁荡熄又大又硬又粗又动态图 | 乌克兰粉嫩xxx极品hd | 欧美日韩国产免费一区二区三区 | 永久免费的av在线电影网无码 | 色综合99久久久无码国产精品 | 男女啪啪进出阳道猛进 | 2012中文字幕在线视频 | 日本内射精品一区二区视频 | 成人午夜福利视频 | 国产成人精品午夜视频 | 亚洲中文字幕不卡无码 | 性色av无码不卡中文字幕 | 天堂а√在线地址在线 | 日本狂喷奶水在线播放212 | 在线天堂www在线国语对白 | 天天躁日日躁狠狠躁超碰97 | 中文字幕日本人妻久久久免费 | 国产激情综合在线观看 | 免费女同毛片在线观看 | 色国产精品一区在线观看 | www国产精品内射熟女 | 欧美最猛黑人xxxx黑人猛交98 | 国产情侣真实露脸在线 | 免费无码不卡视频在线观看 | 精品亚洲成a人片在线观看 | 亚洲午夜精品a片久久www慈禧 | 中文字幕av一区二区三区 | 97免费人妻无码视频 | 国产亚洲精久久久久久无码苍井空 | 欧美巨波霸乳影院 | 中文字幕精品久久久久人妻红杏1 | 亚洲国产精品久久久久久无码 | 亚洲精品无码久久久久久久 | 国产亚洲精品无码成人 | 亚洲一区二区三区自拍公司 | 国产av无码专区亚洲版综合 | 国产成人精品一区二区三区视频 | 色综合久久久无码中文字幕波多 | 久久久日韩精品一区二区 | 久久久久人妻啪啪一区二区 | 国产精品人人妻人人爽人人牛 | 337p日本欧洲亚洲大胆张筱雨 | 亚洲日韩在线观看免费视频 | 久久精品成人免费观看 | av天堂亚洲国产av | 免费va人成视频网站全 | 久久久久人妻啪啪一区二区 | 熟妇五十路六十路息与子 | 国产性夜夜春夜夜爽 | 国产乱人激情h在线观看 | 女人被狂躁60分钟视频 | 无码熟妇人妻av在线网站 | 国产午夜精品理论片 | 久久久久高潮综合影院 | 日本欧美久久久久免费播放网 | 国产精品乱码人妻一区二区三区 | 久久天堂综合亚洲伊人hd妓女 | 色综合色综合色综合色欲 | 日韩午夜无码精品试看 | 日本高清视频www | 久久综合精品国产二区无码 | 18禁黄网站禁片免费观看 | 欧美黑人大战白嫩在线 | 国产伦精品一区二区三区免.费 | 日本乱子伦xxxx | 久久无码人妻精品一区二区三区 | 欧产日产国产精品精品 | 国产又粗又硬又大爽黄老大爷视频 | 荫道bbwbbb高潮潮喷 | 韩国三级丰满少妇高潮 | 99精品一区二区三区无码吞精 | 久久99成人免费 | 亚洲精品国产一区二区在线观看 | 日产a一a区二区www | 九九久久精品国产av片国产 | 美女国产毛片a区内射 | 国产亚洲欧美在线观看 | 国产免费看插插插视频 | 日日噜噜夜夜狠狠久久无码区 | 国产乱子伦精品无码码专区 | 中文字幕精品久久久久人妻红杏1 | 无码中文人妻在线一区二区三区 | 亚洲国产成人爱av在线播放 | 国产69精品久久久久9999apgf | 人人婷婷人人澡人人爽 | 国产成人无码视频一区二区三区 | 国产成人精品亚洲线观看 | 久久不见久久见中文字幕免费 | 亚洲国产午夜精品理论片妓女 | 性高湖久久久久久久久aaaaa | 无码国产色欲xxxx视频 | 国产又色又爽又黄刺激在线视频 | 日本黄网站三级三级三级 | 无码aⅴ精品一区二区三区浪潮 | 宅男666在线永久免费观看 | 亚洲精品国产av天美传媒 | 潮喷大喷水系列无码久久精品 | 人妻丰满熟妇aⅴ无码 | 欧美性大战久久久久久久 | 一本一道精品欧美中文字幕 | 国产69精品久久久久9999apgf | 国产成人无码视频一区二区三区 | 日日摸日日添日日碰9学生露脸 | 欧美性猛交久久久乱大交小说 | 欧洲女人牲交视频免费 | 亚洲精品久久久久久久蜜桃 | 青青草原精品99久久精品66 | 特黄做受又粗又大又硬老头 | 999zyz玖玖资源站在线观看 | 国产清纯在线一区二区 | 国产精品一在线观看 | 欧美性xxxx极品少妇 | 国产情侣真实露脸在线 | 午夜寂寞少妇aaa片毛片 | 久久精品亚洲日本波多野结衣 | 久久久久久久极品内射 | 综合久久给合久久狠狠狠97色 | 性乌克兰xxxx极品 | 久久综合五月丁香久久激情 | 中文字幕乱码免费看电影 | 亚洲精品乱码一区二区三区 | 狠狠色噜噜狠狠狠狠97首创麻豆 | 中文文字幕文字幕亚洲色 | 精品人妻av一区二区三区 | 亚洲综合精品第一页 | 五月丁香综合缴情六月小说 | 3d动漫精品啪啪一区二区下载 | 国产无遮挡裸体免费视频 | 国产精品一国产精品 | 成年无码av片 | 玩弄japan白嫩少妇hd小说 | av怡红院一区二区三区 | 国产精品99久久免费观看 | 亚洲日韩一页精品发布 | 女人18毛片水最多 | 无码av动漫精品一区二区免费 | 亚洲综合激情五月丁香六月 | 日韩精品无码一区二区三区 | 嫩草国产福利视频一区二区 | 野狼av午夜福利在线 | 国产av无码专区亚洲版综合 | 东北少妇不带套对白 | 中文字幕av一区二区三区 | www国产精品内射 | 潮喷大喷水系列无码久久精品 | 久久久一本精品99久久精品66 | 国产成人艳妇aa视频在线 | 亚洲另类无码专区首页 | 亚洲成av人片久久 | 国产亚洲精品一区二区三区 | 久久综合亚洲色hezyo国产 | 亚洲人成网亚洲欧洲无码 | 国产精品va在线播放我和闺蜜 | 中文字幕人妻丝袜乱一区三区 | 中文天堂资源在线www | 亚洲欧美日韩一区二区三区在线 | 青娱乐极品视觉盛宴国产视频 | 丰满人妻熟妇乱又伦精品 | 成人伊人精品色xxxx视频 | 国产偷国产偷亚洲清高app | 亚洲不卡av不卡一区二区 | 亚洲国产精品综合久久20 | 精品国产99高清一区二区三区 | 欧洲精品欧美精品 | 中文字幕有码无码人妻av蜜桃 | 国产亚洲精品无码成人 | 亚洲国产精品久久久久久无码 | 精品无码人妻一区二区免费蜜桃 | 国产成人精品亚洲日本在线观看 | 性一交一乱一伦一色一情孩交 | 国产v亚洲v天堂无码 | 小草社区视频在线观看 | 欧洲s码亚洲m码精品一区 | 国产肉体xxxx裸体137大胆 | 强奷乱码中文字幕熟女导航 | 婷婷俺也去俺也去官网 | 好男人日本社区www | 久青草无码视频在线播放 |